top of page

Publications and submitted papers

2021

Lee, K. and Dominici, F (2021+).  Accounting for recall bias in case-control studies: a causal inference approach. Submitted. [arXiv]

Lee, K., Bhattacharya, B. B., Qin, J. and Small, D. S. (2021+). Nonparametric inference for treatment effects in instrumental variable models. Submitted[arXiv]


Lee, K., Bargagli-Stoffi, F. J., and Dominici, F. (2021+). Causal rule ensemble: Interpretable inference of heterogeneous treatment effects in observational studies. Submitted. [arXiv]

 

2020

Fogarty C.B., Lee, K., Kelz, R.R., and Keele, L. (2020). Biased encouragements and heterogeneous effects in an instrumental variable study of emergency general surgical outcomes. Journal of the American Statistical Association, to appear. [paper]

Lee, K., Small, D.S., and Dominici, F. (2020). Discovering heterogeneous exposure effects using randomization inference in air pollution studies. Journal of the American Statistical Association, 116(534), 569-580[arXiv, paper]

 

2019

Heo, S., Nori-Sarma, A., Lee., K., Benmarhnia, T., Dominici, F., and Bell, M. L. (2019). The use of a quasi-experimental study on the mortality effect of a heat wave warning system in South Korea. International Journal of Environmental Research and Public Health, 16(12), 2245. [paper]

Lee, K., Lorch, S. A., and Small, D. S. (2019). Sensitivity analyses for average treatment effects when outcome is censored by death in instrumental variable models. Statistics in Medicine, 38(13), 2303-2316[arXiv, paper]

Lee, K. and Small, D. S. (2019). Estimating the malaria attributable fever fraction accounting for fever killing parasites and measurement error. Journal of the American Statistical Association, 114(525), 79-92[arXiv, paper]

 

2018

Billig, E. B., Lee, K., Roy, J. A., Small, D. S., Ross, M. E., Castillo-Neyra, R. and Levy. M. Z. (2018). Risk maps for cities: Incorporating streets into geostatistical models. Spatial and Spatio-temporal Epidemiology, 27, 47-59. [paper]

Lee, K., Small, D. S. and Rosenbaum, P. R. (2018). A powerful approach to the study of moderate effect modification in observational studies. Biometrics, 74(4), 1161-1170[arXiv, paper]

Lee, K., Small, D. S., Hsu, J. Y., Silber, J. H., and Rosenbaum, P. R. (2018). Discovering effect modification in an observational study of surgical mortality at hospitals with superior nursing. Journal of the Royal Statistical Society, Series A,  181(2), 535-546. [arXiv, paper]

Papers in preparation

Lee, K. and Zubizarreta, J. R. Inference for overlapping matched samples: Methods and applications. 

Lee, K. and Dominici, F. Sensitivity analysis for recall and unmeasured confounding biases in matched case-control studies. 

Lee, K. and Bhattacharya, B. B. and Small, D. S. A nonparametric likelihood approach to two-component mixture models. 

 

bottom of page